Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Total Environ ; 838(Pt 1): 155970, 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-1852049

ABSTRACT

During the coronavirus disease 2019 (COVID-19) lockdown in 2020, severe haze pollution occurred in the North China Plain despite the significant reduction in anthropogenic emissions, providing a natural experiment to explore the response of haze pollution to the reduction of human activities. Here, we study the characteristics and causes of haze pollution during the COVID-19 outbreak based on comprehensive field measurements in Beijing during January and February 2020. After excluding the Spring Festival period affected by fireworks activities, we found the ozone concentrations and the proportion of sulfate and nitrate in PM2.5 increased during the COVID-19 lockdown compared with the period before the lockdown, and sulfate played a more important role. Heterogeneous chemistry and photochemistry dominate the formation of sulfate and nitrate during the whole campaign, respectively, and the heterogeneous formation of nitrate at night was enhanced during the lockdown. The coeffects of more reductions in NOx than VOCs, weakened titration of NO, and increased temperature during the lockdown led to the increase in ozone concentrations, thereby promoting atmospheric oxidation capacity and photochemistry. In addition, the increase in relative humidity during the lockdown facilitated heterogeneous chemistry. Our results indicate that unbalanced emission reductions and adverse meteorological conditions induce the formation of secondary pollutants during the COVID-19 lockdown haze, and the formulation of effective coordinated emission-reduction control measures for PM2.5 and ozone pollution is needed in the future, especially the balanced control of NOx and VOCs.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Ozone , Air Pollutants/analysis , Air Pollution/analysis , Beijing/epidemiology , COVID-19/epidemiology , China/epidemiology , Communicable Disease Control , Environmental Monitoring , Humans , Nitrates , Ozone/analysis , Particulate Matter/analysis , Sulfates
2.
Chemosphere ; 292: 133500, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1588118

ABSTRACT

COVID-19 rebounded in China in January 2021, with Heilongjiang as one of the worst-affected provinces. This resulted in a new round of lockdown in Harbin, the capital city of Heilongjiang, from 20 January to 22 February of 2021. A field campaign was conducted to explore the responses of haze pollution in Harbin to the lockdown. Levoglucosan was used to reflect biomass burning emissions, while the molar ratio of sulfur (the sum of sulfur dioxide and sulfate) to nitrogen (the sum of nitrogen dioxide and nitrate), i.e., RS/N, was used as an indicator for the relative importance of coal combustion and vehicle emissions. Based on a synthesis of the levoglucosan and RS/N results, reference period was selected with minimal influences of non-lockdown-related emission variations. As indicated by the almost unchanged sulfur dioxide concentrations, coal combustion emissions were relatively stable throughout the lockdown and reference periods, presumably because the associated activities, e.g., heating supply, power generation, etc., were usually uninterruptible. On the other hand, as suggested by the increase of RS/N, vehicle emissions were considerably reduced during lockdown, likely due to the stay-at-home orders. Compared to results from the reference samples, the lockdown period exhibited higher levels of ozone and various indicators for secondary aerosol formation, pointing to an enhancement of secondary pollution. In addition, photochemistry-related reactions in aqueous phase appeared to be present during the lockdown period, which have not been reported in the frigid atmosphere over Northeast China.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , China , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
3.
Huan Jing Ke Xue ; 42(7): 3091-3098, 2021 Jul 08.
Article in Chinese | MEDLINE | ID: covidwho-1296233

ABSTRACT

The COVID-19 pandemic has endangered human health and production since 2019. As an emerging disease caused by SARS-CoV-2, its potential transmissibility via aerosols has caused heated debate. This work summarizes the current research findings on virus aerosol generation, aerodynamic properties, and environmental influencing factors on their survivability in order to elucidate coronavirus transmission via aerosols. The occurrence and distinction of SARS-CoV-2, SARS-CoV-1, and MERS-CoV in real atmospheric environments are summarized. The deficiencies of existing research and directions for necessary future research on confirming the airborne transmission mechanism of coronavirus as well as the need for multidisciplinary research are discussed.


Subject(s)
COVID-19 , Pandemics , Aerosols , Humans , SARS-CoV-2
4.
Huan Jing Ke Xue ; 42(4): 1591-1599, 2021 Apr 08.
Article in Chinese | MEDLINE | ID: covidwho-1143847

ABSTRACT

Based on the air pollution emission inventory technical methodology, this study conducted a quantitative analysis on the changes in major air pollutant emissions in Beijing-Tianjin-Hebei and its surrounding areas from the 'New Year Haze' in the autumn and winter of 2016-2017 to the 'Pandemic Haze' in the autumn and winter of 2019-2020. The contributions of the implementation of air pollution prevention and control policies and the COVID-19 pandemic to major air pollutant emission reductions were studied, and their impacts on the regional air quality under adverse meteorological conditions were simulated using an air quality model. The results showed that from the 'New Year Haze' in Dec 2016-Jan 2017 to the 'Pandemic Haze' in Jan-Feb 2020, the major air pollutant emissions in the region had dropped by approximately 50%, and the average concentration of PM2.5 was potentially reduced by more than 40% under adverse meteorological conditions. The most effective emission reduction measures included the clean heating project and raising the standards in key industrial sectors, such as the iron and steel industry, coal-fired boilers, and power plants, which contributed 67.1% and 53.4% of the emission reductions in SO2 and PM2.5, respectively. The COVID-19 pandemic predominantly affected the mobile sources and light industry, which contributed 71.9% and 68.2% of the emission reductions in NOx and VOCs, respectively. The implementation of air pollution prevention and control policies contributed substantially to the improvement of regional air quality, which effectively reduced the intensity and extent of the heavy pollution process under unfavorable meteorological conditions. The regional average PM2.5 concentration was reduced by 26%, and the number of days experiencing heavy pollution decreased by 44%. Due to the impacts of the COVID-19 pandemic, the average PM2.5 concentration in the region was reduced by an additional 24%, and the duration and extent of heavy pollution decreased even further.

5.
Environ Pollut ; 279: 116923, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1126822

ABSTRACT

To control the spread of COVID-19, China implemented a series of lockdowns, limiting various offline interactions. This provided an opportunity to study the response of air quality to emissions control. By comparing the characteristics of pollution in the summers of 2019 and 2020, we found a significant decrease in gaseous pollutants in 2020. However, particle pollution in the summer of 2020 was more severe; PM2.5 levels increased from 35.8 to 44.7 µg m-3, and PM10 increased from 51.4 to 69.0 µg m-3 from 2019 to 2020. The higher PM10 was caused by two sandstorm events on May 11 and June 3, 2020, while the higher PM2.5 was the result of enhanced secondary formation processes indicated by the higher sulfate oxidation rate (SOR) and nitrate oxidation rate (NOR) in 2020. Higher SOR and NOR were attributed mainly to higher relative humidity and stronger oxidizing capacity. Analysis of PMx distribution showed that severe haze occurred when particles within Bin2 (size ranging 1-2.5 µm) dominated. SO42-(1/2.5) and SO42-(2.5/10) remained stable under different periods at 0.5 and 0.8, respectively, indicating that SO42- existed mainly in smaller particles. Decreases in NO3-(1/2.5) and increases in NO3-(2.5/10) from clean to polluted conditions, similar to the variations in PMx distribution, suggest that NO3- played a role in the worsening of pollution. O3 concentrations were higher in 2020 (108.6 µg m-3) than in 2019 (96.8 µg m-3). Marked decreases in fresh NO alleviated the titration of O3. Furthermore, the oxidation reaction of NO2 that produces NO3- was dominant over the photochemical reaction of NO2 that produces O3, making NO2 less important for O3 pollution. In comparison, a lower VOC/NOx ratio (less than 10) meant that Beijing is a VOC-limited area; this indicates that in order to alleviate O3 pollution in Beijing, emissions of VOCs should be controlled.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Communicable Disease Control , Environmental Monitoring , Gases , Humans , Particulate Matter/analysis , SARS-CoV-2 , Seasons
7.
Sci Adv ; 6(49)2020 12.
Article in English | MEDLINE | ID: covidwho-983587

ABSTRACT

Changes in CO2 emissions during the COVID-19 pandemic have been estimated from indicators on activities like transportation and electricity generation. Here, we instead use satellite observations together with bottom-up information to track the daily dynamics of CO2 emissions during the pandemic. Unlike activity data, our observation-based analysis deploys independent measurement of pollutant concentrations in the atmosphere to correct misrepresentation in the bottom-up data and can provide more detailed insights into spatially explicit changes. Specifically, we use TROPOMI observations of NO2 to deduce 10-day moving averages of NO x and CO2 emissions over China, differentiating emissions by sector and province. Between January and April 2020, China's CO2 emissions fell by 11.5% compared to the same period in 2019, but emissions have since rebounded to pre-pandemic levels before the coronavirus outbreak at the beginning of January 2020 owing to the fast economic recovery in provinces where industrial activity is concentrated.


Subject(s)
COVID-19/epidemiology , Carbon Dioxide/analysis , Pandemics , Satellite Communications , China/epidemiology , Geography , Nitrates/analysis , SARS-CoV-2/physiology
8.
Nat Commun ; 11(1): 5172, 2020 10 14.
Article in English | MEDLINE | ID: covidwho-963670

ABSTRACT

The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (-1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic's effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.


Subject(s)
Air Pollutants/analysis , Carbon Dioxide/analysis , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Air Pollutants/economics , Betacoronavirus , COVID-19 , Carbon Dioxide/economics , Coronavirus Infections/economics , Coronavirus Infections/prevention & control , Environmental Monitoring , Fossil Fuels/analysis , Fossil Fuels/economics , Humans , Industry/economics , Nitrogen Dioxide/analysis , Nitrogen Dioxide/economics , Pandemics/economics , Pandemics/prevention & control , Pneumonia, Viral/economics , Pneumonia, Viral/prevention & control , SARS-CoV-2
9.
Environ Sci Technol ; 54(24): 15660-15670, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-939423

ABSTRACT

The COVID-19 outbreak greatly limited human activities and reduced primary emissions particularly from urban on-road vehicles but coincided with Beijing experiencing "pandemic haze," raising the public concerns about the effectiveness of imposed traffic policies to improve the air quality. This paper explores the relationship between local vehicle emissions and the winter haze in Beijing before and during the COVID-19 lockdown based on an integrated analysis framework, which combines a real-time on-road emission inventory, in situ air quality observations, and a localized numerical modeling system. We found that traffic emissions decreased substantially during the COVID-19 pandemic, but its imbalanced emission abatement of NOx (76%, 125.3 Mg/day) and volatile organic compounds (VOCs, 53%, 52.9 Mg/day) led to a significant rise of atmospheric oxidants in urban areas, resulting in a modest increase in secondary aerosols due to inadequate precursors, which still offset reduced primary emissions. Moreover, the enhanced oxidizing capacity in the surrounding regions greatly increased the secondary particles with relatively abundant precursors, which was transported into Beijing and mainly responsible for the aggravated haze pollution. We recommend that mitigation policies should focus on accelerating VOC emission reduction and synchronously controlling regional sources to release the benefits of local traffic emission control.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2 , Vehicle Emissions/analysis
10.
Natl Sci Rev ; 8(2): nwaa137, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-603591

ABSTRACT

To control the spread of the 2019 novel coronavirus (COVID-19), China imposed nationwide restrictions on the movement of its population (lockdown) after the Chinese New Year of 2020, leading to large reductions in economic activities and associated emissions. Despite such large decreases in primary pollution, there were nonetheless several periods of heavy haze pollution in eastern China, raising questions about the well-established relationship between human activities and air quality. Here, using comprehensive measurements and modeling, we show that the haze during the COVID lockdown was driven by enhancements of secondary pollution. In particular, large decreases in NOx emissions from transportation increased ozone and nighttime NO3 radical formation, and these increases in atmospheric oxidizing capacity in turn facilitated the formation of secondary particulate matter. Our results, afforded by the tragic natural experiment of the COVID-19 pandemic, indicate that haze mitigation depends upon a coordinated and balanced strategy for controlling multiple pollutants.

SELECTION OF CITATIONS
SEARCH DETAIL